104年國中教育會考數學科非選擇題樣卷說明

一、第1題試題內容、評分指引、樣卷說明

<試題內容>

大冠買了一包宣紙練習書法,每星期一寫1張,每星期二寫2張,每星期三寫3張,每星期四寫4張,每星期五寫5張,每星期六寫6張,每星期日寫7張。若大冠從某年的5月1日開始練習,到5月30日練習完後累積寫完的宣紙總數已超過120張,則5月30日可能為星期幾?請求出所有可能的答案並完整說明理由。

<評分指引>依據評分規準,此題評分指引如下:

分數	評分指引
	1. 正確利用張數的規律性,完整列舉並檢驗可能的情
3	形,得出正確結論。
	2. 正確利用張數的規律性列出不等式並求解,得出正
	確結論。
	1. 正確利用張數的規律性,完整列舉並檢驗可能的情
	形,得出合理結論,但過程中出現計算錯誤。
	2. 正確利用張數的規律性,完整列舉並檢驗可能的情
	形,但未明顯呈現正確結論。
2	3. 正確利用張數的規律性,未完整列舉並檢驗可能的
	情形,得出正確結論。
	4. 正確利用張數的規律性列出不等式並求解,得出合
	理結論,但過程中出現計算錯誤。
	5. 正確利用張數的規律性列出不等式並求解,但未明
	顯呈現正確結論。
	1. 呈現張數的規律性,但列式、列舉或檢驗的過程未
1	呈現或不合理。
1	2. 呈現張數的規律性,但未完整列式、列舉或檢驗,
	且未得出正確結論。
0	1. 只有答案或與題目無關。
	2. 策略模糊不清或錯誤。

<樣卷說明>

序號	3 分樣卷-1	
分數	3	
指引	1	
114 1/2 10		

樣卷說明

正確利用張數的規律性,完整列舉並檢驗 5/1的 7種情形,得出 5/30為星期幾的正確結論。

A: 星期五、大、日举 30天之了 = 4星期又2天

若 划 引星期一

$$4 \times (|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$$

マニー
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7) + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+4+5+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15,5/30=|4|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+7| + |+2=|15|$
 $|+2+3+6+$

序號	3 分樣卷-2	
分數	3	
指引	2	
樣卷說明		
正確利用張數的規律性		
列出宣紙總	.數超過 120	
張的不等式	,並解出正整	
數解,得出	5/30 為星期	

幾的正確結論。

5/~5/30 →共30天 → 4週+天

1週 =(1+2+3+4、、+7)=28張 4週 = 112張

設約寫x張,%3寫 x+1張

2x > 17

X=4.5 b

X=7(不合): 112+17+1=120 故物0為星期五大、日 A:五、六、日

序號	2 分樣卷-1
分數	2
指引	1

樣卷說明

正確利用張數的規律 性,完整列舉並檢驗7 種情形,但在5/30為星 期一時出現計算錯誤 (7+1=9),且根據此錯誤 前提下作出 5/30 為星期 一時累積張數大於120 的推論,得出 5/30 可能 為五六日一的合理結論。

|+2+3+4+5+6+7=28 --> 一週的用量

1+1=3 112+3 =115 < 120 ~= 4~~1 112+5 = 117 < 120 112+7 = 119 < 120 112+9 = 121 > 120 112+11 = 123 > 120 2+3=5 3+4= 7 4+5=9 111= 4x8c 117+13=172 >170 5+6=11 112+9 = 121 >120 6+9=13 9+1=9

A湿期伍)(分(日)(-)

2 分樣卷-2
2
2

樣卷說明

正確利用張數的規律 性,完整列舉並檢驗7 種情形,僅呈現5/1為星 期幾,但未明顯呈現5/30 為星期幾的正確結論。

30-|+|=30(5月1日~5月30日,有30天) 假設5月1日是星期一

30÷7 = 4...2

 $(1+2+3+4+5+6+7)\times4+(1+2)=115$ 115 < 120 ⇒ 故 5月1日不可能是星期一

假設5月1日是星期二

30+7=4...2

(2+3+4+5+6+7+1) ×4+(2+3) = 117

117<120⇒故5月1日不可能是星期二

假設 5月1日是星期三

30÷7=4 ...2

(3+4+5+6+7+1+2)*4+(3+4)=119 119~120=>故5月1日不可能是期三

假設 5月1日是星期四

30 -7 = 4 ...2

(4+5+6+7+1+2+3) ×4+(4+5)=121

121 > 120 => 故5月1日可能是星期四、

假設5月旧是星期五

(5+6+7+1+2+3+4) x 4+(5+6) = 123

123 >120 => 故5月1日可能是星期五

假設5月1日是劉大

(6+7+1+2+3+4+5) ×4+(6+7)=125 125> 120 => 故5月1日可能是星期天

假設 5月1日呈星期日

(7+1+2+3+4+5+6) x4+(7+1)=120

120=120=改印119不可能是星期日 答: 四五六

序號	2 分樣卷-3
分數	2
指引	5

樣卷說明

正確利用張數的規律性 列出不等式並求解,但未 明顯呈現 5/30 為星期幾 的正確結論。

5月1日~ 5月30日共有30天 1星期有 7天

30 + 7 = 4 111 1

星期 一至星期 天共寫:

(1+7) × 7 ÷ ユ = 28 (張)

設剩下的工天: 1天腐又張.另一天腐

(ス+1) 張

 $28 \times 4 + \times + (x+1) > 120$ 112 + 2x + 1 > 120

ス > ユ < x > 3 ½ > x > 3 ½ >

→ 5月30日可能為星期四∨五×六

序號	1 分樣卷-1
分數	1
指引	1

樣卷說明

呈現張數的規律性,雖寫 出正確結論,但列舉不完 整,檢驗過程不合理。

巩旧和国期 - 別(1+2t3--7)X4+3 =95 5月1日的開 = 別(2+3+4---+1)+(1+2+3+4-47)以+3 =106-5月1日的副 = 別(3+4+t---+1)+(1+2+3--+17)以中 日本AM BIV 11.4-アルーナワ = 109 星的四刻(Ut546~~+7)

AS五六日

序號	1 分樣卷-2		
分數	1		
指引	2		
樣卷說明			
呈現張數的規律性,但未			
完整列舉並檢驗可能的			

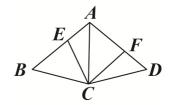
情形,

僅得出 5/30 為星期五的 部分推論。

5/1~5/30>120號. 設多。 為星期五.

1×4+ 2×4 +3×4+ 4×5+ 5×5 +6×4 + 1×4 = 4+8+12+70+75+74+28

= がナガナナア -= 三回をうせ


序號	0 分樣卷-1				
分數	0	5918	5月20日		
指引	2	5A20	5月21日 5月22日		
樣名	 卷說明	5A3B 5A4A	5 A 23 B		
策略模糊不	清。		5月24日 5月27日 5月27日 5月28日 5月29日 5月20日	A-5月30日星期一	

序號	0 分樣卷-2	
分數	0	
指引	2	·: 30÷7=4≥ ·: 5月旧~5月30日共4禮拜又2天
樣卷	 影説明	○5月1日~5月30日共 4末豊年美文Z天
策略模糊不	清。	
		(40)

二、第2題試題內容、評分指引、樣卷說明

<試題內容>

如圖(十七),四邊形ABCD中, \overline{AC} 為 $\angle BAD$ 的角平分線, $\overline{AB} = \overline{AD}$,E、F 兩點分別在 \overline{AB} 、 \overline{AD} 上,且 $\overline{AE} = \overline{DF}$ 。請完整說明為何四邊形AECF的面積為四邊形ABCD的一半。

圖(十七)

<評分指引>依據評分規準,此題評分指引如下:

分數	評分指引
	1. 正確使用角平分線的幾何性質,完整推論幾何圖形
3	間的面積關係。
	2. 正確使用角平分線的幾何性質,以適當的數學式表
	示幾何圖形面積,並完整推導出結論。
	1. 正確使用角平分線的幾何性質進行推論,但在說明
	幾何圖形間的面積關係時,缺乏步驟間的合理性。
2	2. 正確使用角平分線的幾何性質,以適當的數學式表
	示幾何圖形面積,但在推導出結論的過程中,缺乏
	步驟間的合理性。
	1. 正確寫出推論時需使用到的部分幾何性質或幾何圖
1	形的面積關係,但無法合理推得結論。
1	2. 以適當的數學式表示部分幾何圖形的面積關係,但
	無法合理推導出結論。
0	1. 只有答案或與題目無關。
0	2. 策略模糊不清或錯誤。

<樣卷說明>

序號	3 分樣卷-1	
分數	3	
指引	1	
樣卷說明		
正確使用角平分線性		

正確使用角平分線性 質得出兩高相等,合理 且完整推論幾何圖形 間的面積關係。 ACA角平分線。 則 AABC中AB上的高與 AACD中AD上的高等長。

AB = AD AE = DF 因為 AB - AE = AD - OF 所以 EB = AF

ΔACE = ΔCFD ΔACF = ΔBCE

則 DACE + DACF = 四邊形, AECF

= 1 (A ACE + A ACF + ABCE + ACDF)

= ½ 四邊形ABCD

序號	3 分樣卷-2
分數	3
指引	2
樣卷說明	

正確使用角平分線的 幾何性質,得出兩高相 等,合理且完整以數學 式推導幾何圖形間的 面積關係。 在△ABC和△ADC中 "∠BAC=∠DAC(AC為∠BAD的角平分線) AB=AD AC=AC(公用邊)

「ABC Y ADC (SAS 主筆) 「F CG L RB 5 CG RB 5 CH L AD 6 CH RB L AD C G RB 5 CH L AD 6 CH RB L BE REACH AF X CH L AT X CH L AT X CH L AD X

又AADC面積=AABC面積(全等)=之四是形ABCD 得四邊形AECF面積為四邊形ABCD的一半

序號	2 分樣卷-1
分數	2
指引	1
14 1/ 10 00	

樣卷說明

未呈現根據角平分線 性質得出高相等的結 論,使得 $\Delta AEC = \Delta DCF$ 的理由(高相等)不充 分,缺乏步驟間的合理 性。

: A ABL & DALD (SAS)

 ○ ABC + AACD 面積 = 四邊形 ABCD △ AFC + A AEC = 四邊形 AECF

 故 四邊形 AECF 面積 = → 四邊形
 ABCD

 面積

序號	2 分樣卷-2
分數	2
指引	2

樣卷說明

未明確根據已知AC為 角平分線說明AB與AD 上的高相等,致使「高」 代表同樣數值不明確;其 在數學式中可被提出及 消去(公因數)的理由不 充分,缺乏步驟間的合理 性。

$$\Box \frac{ABCE}{ABCD} = \frac{y \times \hat{0} \times \frac{1}{2} + x \times \hat{0} \times \frac{1}{2}}{(y + x) \hat{0} \times \frac{1}{2} + (y + x) \hat{0} \times \frac{1}{2}} = \frac{1 \hat{0} (x + y)}{1 \hat{0} (2x + 2y)}$$

$$=\frac{\frac{1}{2}}{\frac{1}{2}}(x+y) = \frac{1}{2}$$

故 DAECF A DABCD 的一半

序號	1 分樣卷-1	
分數	1	
指引	1	△ACB與△ACD
様老	 影説明	放 K = K (平分炮) − K = K (2 N)
僅正確推論	ì	LBA(=LDAC(AC為LBAD的為名為。)
$\Delta ACB \cong \Delta A$	CD,無法合	MUL AACB \(\times AACD (SAS)
理推得結論	•	FILEX BACK = DACK (SA)

	<u> </u>	
序號	1分樣卷-2	
分數	1	: AB = AD, AF = DF
指引	2	· BE = AF
様者		設 丽迎上的高為 ×
僅正確以婁	炎學式呈現	亚迪岛
四邊形AE	CF	
$\overline{AE} \bullet x \overline{A}$	$\frac{\overline{F} \cdot y}{2}$, 但未說	四现形,ABCD;四亚形,AECF
=+-	2 ,但未說	= B·X + A·Y : E·X + A·Y
明高相等且	計算錯誤,無	TO COULD (WILD
法合理推導	結論。	= ZAB·(Xty) > (AE+DE)·(X+y)
		= 2AB: AB
		2 2 - \ <u>\</u>
		- \

序號	0 分樣卷-1	
分數	0	$\overline{AB} = \overline{AD}$
指引	2	
様者		RAE = DF
僅寫出已知	條件及部分	所以 BE = AF
線段關係,	策略模糊不	All IV DE - 101
清。		AC 平分 ∠BAD
		所以四氢形的面積=四氢形ABCD的一半
		EQ -*
		a a constant of the constant o